Exam - PoMS, 20/02/2014

- Write each question on a sheet of paper.
- Write your name and student ID on each sheet.
- Pay attention to units. A numerical result without a unit will be considered wrong!
- Only a regular calculator is allowed.
- This is NOT an open book exam.
- You are allowed to bring one A4 page with your own notes (one side only).
- You have 3 hours to complete the exam.
- Note: $\mathscr{L}(t^n e^{-\alpha t}) = \frac{n!}{(s+\alpha)^{n+1}}$.

Question 1: General (2 points)

- (a) What is the Nyquist sampling theorem and explain its underlying principle.
- (b) What is reluctance and explain qualitatively the working principle of a variable reluctance tachogenerator.
- c) What is the working principle behind Amplitude Modulation (AM) and explain how such a technique can help to reduce external interferences?
- (FM) What is the working principle behind Frequency Modulation (FM) and explain how such a technique can help to reduce external interferences?

Question 2: A force measurement system (2 points)

A force measurement system consists of linear elements and has an overall steady-state sensitivity of unity. The dynamics of the system are determined by the second-order transfer function of the sensing element, which has a natural frequency $\omega_n = 35$ rad/s and a damping ratio $\xi = 0.15$. Calculate the system dynamic error corresponding to the periodic input force signal:

$$F(t) = 50 \left(\sin 10t + 1/3 \sin 30t + 1/5 \sin 50t \right),$$

with t in seconds and F(t) in Newtons.

Question 3: A strain gauge measurement system (2 points)

Consider a strain gauge measurement system as indicated in Fig. 1. The sensor consists of 4 strain gauges for which R_1 and R_4 are placed in tensile mode, e.g. $R_1 = R_4 = R_0(1 + Ge)$, and R_2 and R_3 in compressive mode, e.g. $R_2 = R_3 = R_0(1 - Ge)$, with $R_0 = 100 \Omega$ at a temperature of T = 20 °C and a gauge factor of G = 2. The power supply has a voltage of $V_S = 12$ V. The sensor is connected to a recorder element via a cable with a total resistance of $R_C = 50 \Omega$. The recorder has a loading resistance of $R_L = 10 \text{ k}\Omega$.

- a) Find the Thévenin equivalent voltage, V_{Th} , and the corresponding impedance, Z_{Th} , of the sensor element.
- b) Calculate the voltage over R_L , V_L , for a strain of $e = 10^{-3}$ at T = 20 °C. How large is the loading effect on the recorder?
- The temperature of the sensor increases, which leads to an increase in the resistances of the strain elements, R_1 , R_2 , R_3 , and R_4 , by 5 Ω . What is the main underlying physical mechanism that increases the resistance of a conductor due to an increase in temperature? Discuss the influence of this effect on V_L .
- d) The output voltage on the recorder, V_L , is considered to be too small. Redesign the measurement system in such a way that V_L is amplified by a factor 10. For this, introduce an ideal operational amplification element without changing the sensor and recorder elements and their parameters.

Figure 1: Figure corresponding to question 3.

Question 5: A current transmitter (2 points + 1 bonus point)

Consider a current transmitting system as indicated in Fig. 3. A sensor consists of a Norton current source connected to a resistance $R_N=1$ M Ω and a capacitor $C_N=1000$ pF. The indicator reads the voltage (V_L) over a resistance $R_L=10$ k Ω . An interfering series mode voltage V_{SM} can be present on the system.

₁ a) Take $V_{SM}=0$. Show that the transfer function is given by

$$\frac{\Delta \tilde{V}_L}{\Delta \tilde{i}_N}(s) = R'\left(\frac{1}{1+s\tau}\right),\tag{1}$$

with $R'=R_NR_L/(R_N+R_L)=9.9$ k Ω and $\tau=C_NR'=9.9$ μ s.

- b) The current i_N increases suddenly (as a step function) to 1 mA at t=0 from a steady-state condition with $i_N=V_L=0$ at a time t<0. Give an expression for $V_L(t)$ and make a sketch of its time dependence.
- Consider a steady-state situation with an interfering voltage $V_{SM}=10$ V together with $i_N=1$ mA. How large is the influence of the interfering voltage on V_L ? Give the signal-to-noise ratio (S/N) in dB.

Figure 3: A current transmitter.

Question 4: A potentiometric displacement sensor (2 points)

A potentiometer has a total length of d_T and a resistance of R_P . The supply voltage of the potentiometer is indicated as V_S . The potentiometer is connected to a recorder with a resistance R_L . The setup is illustrated in Fig. 2.

a) Show that the voltage at the recorder, V_L , is given by

$$V_L = V_S \frac{x}{(R_P/R_L)x(1-x)+1},$$

with $x=d/d_T$ and d is the displacement. [Hint: you can make use of the Thévenin equivalent circuit law.]

b) In the ideal case, $R_L >> R_P$, we would have the relation $V_L/V_S \approx x$. Estimate the maximum non-linearity of V_L/V_S for $R_L=1$ k Ω and $R_P=100$ Ω . At which value of x does one find the maximum non-linearity?

Figure 2: A potentiometric displacement sensor.

Steady-state sonsitivity of 1: = 1(%)

natural frequency

: 41 = 35 (rats)

damping ratio

E(t) = Pout (t) - Fin (t)

From page 63 of Bendley: $F_{\text{out}}^{(n)}(t) = \hat{\mathcal{I}}^{(n)}(k) \cdot |G(j\omega_n)| \cdot \text{Sin}(\omega_n t + \phi_n)$

=> Fout (t) = 50[[6(105) | Sin(10++p10) + \frac{|6(305)|}{3} \Sin(30++p30) + \frac{|6(505)|}{5} \Sin(50++p50)]

Second-order dransfer function:

$$\begin{cases} G(s) = \frac{1}{(s^2 + \frac{25}{\omega_h} + 1)} \\ |G(s)| = \frac{1}{(1 - \frac{\omega^2}{\omega_h^2})^2 + 45^2 (\frac{\omega}{\omega_h})^2} \end{cases}$$

 $= \sqrt{|G_{00}(103)|} = \frac{1}{\sqrt{(1-\frac{10^2}{2})^2 + 4 \times 0.015^2 \times (\frac{10}{35})^2}} =$

 $\left(\frac{25 \, \omega}{10^{2} \, \text{arg}} \right) = -\text{are tan} \left(\frac{25 \, \omega}{10^{2} \, \text{arg}}\right) = -0.063$

Finally, we will have :

, \$30 = -4401°

-0,71

Thus,

$$\mathcal{E}(t) = 50 \left[1.08 \, \text{Lin} \left(10t - \text{S}^2 \right) - \text{Lin} \left(10t \right) \right] + \frac{50}{3} \left[2.71 \, \text{Lin} \left(30t - 44^{\circ} \right) - \text{Lin} \left(30t \right) \right] + \frac{50}{3} \left[0.89 \, \text{Lin} \left(50t - 158^{\circ} \right) - \text{Lin} \left(50t \right) \right]$$

$$E_{rh} = \sqrt{\frac{R_1 R_4 - R_2 R_3}{(R_1 + R_1)(R_3 + R_4)}} = V_s \left[\frac{R_1^3 (1 + ge)^2 - R_2^3 (1 - ge)^3}{4R_1^3} \right]$$

$$= V_s \left[\frac{4 ge}{4} \right] = 2 V_s ge$$

$$Z_h = \frac{R_3 R_4}{R_3 + R_4} + \frac{R_1 R_2}{R_1 + R_2} = \frac{R_0^2 (1 - ge)(1 + ge)}{2R_0} + \frac{R_0^2 (1 + ge)(1 + ge)}{2R_0}$$

V_L = E_h
$$\frac{R_L}{R_L + R_c + Z_h} = V_s S_e \frac{10.10^3 \text{ S}_L}{10.10^3 + 50 + 100 \text{ R}_L}$$

(1/2/

temp. increase of conductor => T Reduces => R1

(time between == interaction,

$$\left(R=S\frac{l}{A}=\frac{m_e}{2\pi r}\frac{l}{A}\right)$$

temporation effect = 1 R1=R2=R3=R4=Ro(1+OFT)

Ba - hondly chayes Ve!

JACHUR 10 Applification, =)
$$\frac{2R_F}{R_U} = 10$$

 $L_1 R_F = 5R_U = 500 \Omega$

Question 41 equivalent circuit: Eth: open circuit (RL-00) ETh = Vs Rp.x = Vs.x RA: short cut Vs =) Rth = Rp (1-x) // Rp x =) \frac{1}{R_{1}h} = \frac{1}{R_{p}(1-x)} + \frac{1}{R_{p}x} =) $R_{h}^{-1} = \frac{R_{x} + R_{p}(i-x)}{R_{p}^{2}(i-x)x}$ =) $R_{h} = R_{p} \times (i-x)$ V_L = E_h R_L+R_h = V₁ × R_L+R_N(1-x) = V_S (R_L+R_Nx(1-x)+1

= 1.48 %

Vsn = 10 V Vsis distantin or (superposition) super position \$ = 20 N